Перевод: с английского на все языки

со всех языков на английский

Industry Applications Society

  • 1 Industry Applications Society

    Универсальный англо-русский словарь > Industry Applications Society

  • 2 IAS

    1) Общая лексика: Iridium Aeronautical Services
    2) Компьютерная техника: Immediate Access Storage
    8) Юридический термин: Inmate Assignment System
    9) Бухгалтерия: международный стандарт бухгалтерского учёта (сокр. от "International Accounting Standard")
    11) Автомобильный термин: inlet air solenoid (Ford)
    13) Вычислительная техника: immediate address storage, память с прямой адресацией, Interactive Application System (DEC), international accounting standards
    15) Вирусология: International AIDS Society
    17) Деловая лексика: МСБУ
    18) Глоссарий компании Сахалин Энерджи: International Association of Sedimentologists, ИАС (Institute of Automated Systems), Институт Автоматизированных Систем (Institute of Automated Systems)
    20) Образование: Ideas Action And Success
    21) Сетевые технологии: Internet Authentication Server
    23) Автоматика: Industry Applications Society
    24) Сахалин Р: Institute of Automated Systems
    25) Медицинская техника: interatrial septum (ЭхоКГ)
    26) Химическое оружие: Information Analysis System, instrument air system
    27) Авиационная медицина: incremental adaptation schedule
    29) Расширение файла: Internet Access Server
    32) Аэропорты: Iasi, Romania
    34) Международная торговля: International Approval Services

    Универсальный англо-русский словарь > IAS

  • 3 IAS

    сокр. от Industry Applications Society

    English-Russian dictionary of mechanical engineering and automation > IAS

  • 4 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 5 Mansfield, Charles Blachford

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 May 1819 Rowner, Hampshire, England
    d. 26 February 1855 London, England
    [br]
    English chemist, founder of coal-tar chemistry.
    [br]
    Mansfield, the son of a country clergyman, was educated privately at first, then at Winchester College and at Cambridge; ill health, which dogged his early years, delayed his graduation until 1846. He was first inclined to medicine, but after settling in London, chemistry seemed to him to offer the true basis of the grand scheme of knowledge he aimed to establish. After completing the chemistry course at the Royal College of Chemistry in London, he followed the suggestion of its first director, A.W.von Hofmann, of investigating the chemistry of coal tar. This work led to a result of great importance for industry by demonstrating the valuable substances that could be extracted from coal tar. Mansfield obtained pure benzene, and toluene by a process for which he was granted a patent in 1848 and published in the Chemical Society's journal the same year The following year he published a pamphlet on the applications of benzene.
    Blessed with a private income, Mansfield had no need to support himself by following a regular profession. He was therefore able to spread his brilliant talents in several directions instead of confining them to a single interest. During the period of unrest in 1848, he engaged in social work with a particular concern to improve sanitation. In 1850, a description of a balloon machine in Paris led him to study aeronautics for a while, which bore fruit in an influential book, Aerial Navigation (London, 1851). He then visited Paraguay, making a characteristically thorough and illuminating study of conditions there. Upon his return to London in 1853, Mansfield resumed his chemical studies, especially on salts. He published his results in 1855 as Theory of Salts, his most important contribution to chemical theory.
    Mansfield was in the process of preparing specimens of benzene for the Paris Exhibition of 1855 when a naphtha still overflowed and caught fire. In carrying it to a place of safety, Mansfield sustained injuries which unfortunately proved fatal.
    [br]
    Bibliography
    1851, Aerial Navigation, London. 1855, Theory of Salts, London.
    Further Reading
    E.R.Ward, 1969, "Charles Blachford Mansfield, 1819–1855, coal tar chemist and social reformer", Chemistry and Industry 66:1,530–7 (offers a good and well-documented account of his life and achievements).
    LRD

    Biographical history of technology > Mansfield, Charles Blachford

  • 6 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 7 Baekeland, Leo Hendrik

    [br]
    b. 14 November 1863 Saint-Martens-Latern, Belgium
    d. 23 February 1944 Beacon, New York, USA
    [br]
    Belgian/American inventor of the Velox photographic process and the synthetic plastic Bakélite.
    [br]
    The son of an illiterate shoemaker, Baekeland was first apprenticed in that trade, but was encouraged by his mother to study, with spectacular results. He won a scholarship to Gand University and graduated in chemistry. Before he was 21 he had achieved his doctorate, and soon afterwards he obtained professorships at Bruges and then at Gand. Baekeland seemed set for a distinguished academic career, but he turned towards the industrial applications of chemistry, especially in photography.
    Baekeland travelled to New York to further this interest, but his first inventions met with little success so he decided to concentrate on one that seemed to have distinct commercial possibilities. This was a photographic paper that could be developed in artificial light; he called this "gas light" paper Velox, using the less sensitive silver chloride as a light-sensitive agent. It proved to have good properties and was easy to use, at a time of photography's rising popularity. By 1896 the process began to be profitable, and three years later Baekeland disposed of his plant to Eastman Kodak for a handsome sum, said to be $3–4 million. That enabled him to retire from business and set up a laboratory at Yonkers to pursue his own research, including on synthetic resins. Several chemists had earlier obtained resinous products from the reaction between phenol and formaldehyde but had ignored them. By 1907 Baekeland had achieved sufficient control over the reaction to obtain a good thermosetting resin which he called "Bakélite". It showed good electrical insulation and resistance to chemicals, and was unchanged by heat. It could be moulded while plastic and would then set hard on heating, with its only drawback being its brittleness. Bakelite was an immediate success in the electrical industry and Baekeland set up the General Bakelite Company in 1910 to manufacture and market the product. The firm grew steadily, becoming the Bakélite Corporation in 1924, with Baekeland still as active President.
    [br]
    Principal Honours and Distinctions
    President, Electrochemical Society 1909. President, American Chemical Society 1924. Elected to the National Academy of Sciences 1936.
    Further Reading
    J.Gillis, 1965, Leo Baekeland, Brussels.
    A.R.Matthis, 1948, Leo H.Baekeland, Professeur, Docteur ès Sciences, chimiste, inventeur et grand industriel, Brussels.
    J.K.Mumford, 1924, The Story of Bakélite.
    C.F.Kettering, 1947, memoir on Baekeland, Biographical Memoirs of the National Academy of Sciences 24 (includes a list of his honours and publications).
    LRD

    Biographical history of technology > Baekeland, Leo Hendrik

  • 8 Dow, Herbert Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 26 February 1866 Belleville, Ontario, Canada
    d. 15 October 1930 Rochester, Minnesota, USA
    [br]
    American industrial chemist, pioneer manufacturer of magnesium alloys.
    [br]
    Of New England ancestry, his family returned there soon after his birth and later moved to Cleveland, Ohio. In 1884, Dow entered the Case School of Applied Science, graduating in science four years later. His thesis dealt partly with the brines of Ohio, and he was persuaded to present a paper on brine to the meeting of the American Association for he Advancement of Science being held in Cleveland the same year. That entailed visits to collect samples of brines from various localities, and led to the observation that their composition varied, one having a higher lithium content while another was richer in bromine. This study of brines proved to be the basis for his career in industrial chemistry. In 1888 Dow was appointed Professor of Chemistry at the Homeopathic Hospital College in Cleveland, but he continued to work on brine, obtaining a patent in the same year for extracting bromine by blowing air through slightly electrolysed brine. He set up a small company to exploit the process, but it failed; the process was taken up and successfully worked by the Midland Chemical Company in Midland, Michigan. The electrolysis required a direct-current generator which, when it was installed in 1892, was probably the first of its kind in America. Dow next set up a company to produce chlorine by the electrolysis of brine. It moved to Midland in 1896, and the Dow Central Company purchased the Midland Chemical Company in 1900. Its main concern was the manufacture of bleaching powder, but the company continued to grow, based on Dow's steady development of chemical compounds that could be derived from brines. His search for further applications of chlorine led to the making of insecticides and an interest in horticulture. Meanwhile, his experience at the Homeopathic Hospital doubtless fired an interest in pharmaceuticals. One of the substances found in brine was magnesium chloride, and by 1918 magnesium metal was being produced on a small scale by electrolysis. An intensive study of its alloys followed, leading to the large-scale production of these important light-metal alloys, under the name of Dowmetals. Two other "firsts" achieved by the company were the synthetic indigo process and the production of the element iodine in the USA. The Dow company became one of the leading chemical manufacturers in the USA, and at the same time Dow played an active part in public life, serving on many public and education boards.
    [br]
    Principal Honours and Distinctions
    Society of Chemical Industry Perkin Medal 1930.
    Bibliography
    Dow was granted 65 patents for a wide range of chemical processes.
    Further Reading
    Obituary, 1930, Ind. Eng. Chem. (October).
    "The Dow Chemical Company", 1925, Ind. Eng. Chem. (September)
    LRD

    Biographical history of technology > Dow, Herbert Henry

  • 9 Phillips, Edouard

    [br]
    b. 21 May 1821 Paris, France
    d. 14 December 1889 Pouligny-Saint-Martin, France
    [br]
    French engineer and mathematician who achieved isochronous oscillations of a balance by deriving the correct shape for the balance spring.
    [br]
    Phillips was educated in Paris, at the Ecole Polytechnic and the Ecole des Mines. In 1849 he was awarded a doctorate in mathematical sciences by the University of Paris. He had a varied career in industry, academic and government institutions, rising to be Inspector- General of Mines in 1882.
    It was well known that the balance of a watch or chronometer fitted with a simple spiral or helical spring was not isochronous, i.e. the period of the oscillation was not entirely independent of the amplitude. Watch-and chronometer-makers, notably Breguet and Arnold, had devised empirical solutions to the problem by altering the curvature of the end of the balance spring. In 1858 Phillips was encouraged to tackle the problem mathematically, and two years later he published a complete solution for the helical balance spring and a partial solution for the more complex spiral spring. Eleven years later he was able to achieve a complete solution for the spiral spring by altering the curvature of both ends of the spring. Phillips published a series of typical curves that the watch-or chronometer-maker could use to shape the ends of the balance spring.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences 1868. Chairman, Jury on Mechanics, Universal Exhibition 1889.
    Bibliography
    1861, "Mémoire sur l'application de la Théorie du Spiral Réglant", Annales des Mines 20:1–107.
    1878, Comptes Rendus 86:26–31.
    An English translation (by J.D.Weaver) of both the above papers was published by the Antiquarian Horological Society in 1978 (Monograph No. 15).
    Further Reading
    J.D.Weaver, 1989, "Edouard Phillips: a centenary appreciation", Horological Journal 132: 205–6 (a good short account).
    F.J.Britten, 1978, Britten's Watch and Clock Maker's Handbook, 16th edn, rev. R Good (a description of the practical applications of the balance spring).
    DV

    Biographical history of technology > Phillips, Edouard

См. также в других словарях:

  • IEEE Industry Applications Society — The IEEE Industrial Applications Society (IAS) is a Society of the Institute of Electrical and Electronics Engineers (IEEE). Vision StatementTo be a world leader in the advancement of technology and dissemination of technical information to… …   Wikipedia

  • Climate change, industry and society — See also: Avoiding dangerous climate change and Effects of climate change on humans This article is about climate change, industry and society. Contents 1 Vulnerability 1.1 General effects 1.2 Human settlement …   Wikipedia

  • Society of Radiographers — Founded 1920 Members 18,635 Country United Kingdom Affiliation TUC …   Wikipedia

  • IEEE Industrial Electronics Society — The IEEE Industrial Electronics Society (IES) is a Society of the Institute of Electrical and Electronics Engineers (IEEE). Vision StatementThe vision of the IES is to advance global prosperity by fostering technological innovation, enabling… …   Wikipedia

  • Society of Exploration Geophysicists — The Society of Exploration Geophysicists (or SEG) is a nonprofit organization dedicated to promoting the science of geophysics and the education of exploration geophysicists. The Society fosters the expert and ethical practice of geophysics in… …   Wikipedia

  • Society for Industrial and Applied Mathematics — Infobox Organization name = Society for Industrial and Applied Mathematics |thumb|200px image border = size = caption = formation = 1951 type = headquarters = Philadelphia, PA location = membership = 11,000 language = leader title = President… …   Wikipedia

  • Society of the Song Dynasty — …   Wikipedia

  • Society of Yeager Scholars — The Society of Yeager Scholars is the name of the highest academic scholarship offered at Marshall University, named in honor of Chuck Yeager, the first recorded pilot to break the sound barrier. General informationThe scholarship was established …   Wikipedia

  • industry, sociology of — A loosely defined, but well established sub specialism within sociology, which can trace its origins back to the discipline s founders. Its expansion in the twentieth century was encouraged by the hope of certain company managements , notably in… …   Dictionary of sociology

  • IEEE Communications Society — Type Professional Organization Founded 1952 Origins Formation of IRE’s (the Institute of Radio Engineers) Professio …   Wikipedia

  • London Mathematical Society — Formation 1865 Type Learned society Headquarters London …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»